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In theory, one may obtain five equations from each attaching point of a
spring–mass system and two boundary–equations from each end of the uniform
beam. Hence, for a uniform beam carrying n spring–mass systems, simultaneous
equations of the form [B�]{C�}= 0 will be obtained. The solutions of =B�== 0 (where
=·= represents a determinant) give the natural frequencies of the ‘‘constrained’’
beam and the substitution of each corresponding values of C� j ( j=10 4) into the
eigenfunction will define the associated mode shapes. While the foregoing theory
is simple, the lengthy explicit mathematical expressions become impractical if the
total number of spring–mass systems is larger than ‘‘two’’. For this reason, it was
applied to do the free vibration analysis of a uniform beam carrying ‘‘one’’
spring–mass system only in the existing literature. The purpose of this paper is
to present a numerical technique to apply the foregoing theory to obtain the exact
solutions for the lowest several natural frequencies and mode shapes of a uniform
beam carrying ‘‘any number of ’’ spring–mass systems with various boundary
conditions. To this end, each integration constant Cvi and each mode displacement
Zv (v=10 n, i=10 4) at the attaching point and the two ends of the beam are
considered as nodal displacements of a finite beam element and are assigned an
appropriate degree of freedom (dof). Hence, each associated coefficient matrix will
be equivalent to the stiffness matrix of a beam element, and the conventional
numerical assembly technique for the finite element method (FEM) may be used
to determine the ‘‘overall’’ coefficient matrix [B�]. Therefore, the eigenvalue
equation [B�]{C�}= 0 is easily obtained.
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1. INTRODUCTION

Although the analytical solution for the natural frequencies and mode shapes of
a uniform beam or plate may be obtained with no difficulty [1], trouble arises when
the beam or plate is attached by any kind of ‘‘concentrated elements’’, such as
elastically mounted point masses, rigidly attached point masses, translational
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springs, and/or rotational springs [2–22]. Since the natural frequencies of a beam
or plate carrying a spring–mass system may deviate considerably from those of
the beam or plate itself, a lot of researchers have devoted themselves to study this
problem. The solution of this problem has usually been obtained by means of the
exact analysis [2–5], or the numerical (approximate) method [6–9].

In theory, most of the approaches presented in the foregoing literature may be
extended to solve the eigenvalue problems for a uniform beam or plate carrying
‘‘any number of ’’ concentrated elements. In practice, however, they are not easily
implemented because of the complexity of the mathematical expressions. For this
reason, the total number of ‘‘concentrated elements’’ illustrated in references
[1–17] is less than ‘‘two’’.

To circumvent the drawback of the existing approaches, this paper presents a
numerical assembly technique to derive the eigenvalue equation [B�]{C�}= 0, and
then the conventional methods (e.g., half-interval method and Gauss–Jordan
reduction method) were used to solve the eigenvalues and the corresponding
eigenvectors. By considering the two (left and right) ‘‘sides’’ of any attaching point
for a spring–mass system to the uniform beam and the two (left and right) ‘‘ends’’
of the uniform beam as nodal points, the associated integration constants C� i

(i=10 5n+4) and mode displacement Zv (v=10 n) can be viewed as nodal
displacements, so that the associated coefficient matrix [BL ], [Bv ] or [BR ] may now
be considered as the element stiffness matrix of a beam element and the
conventional assembly technique of the direct stiffness matrix method for the finite
element method (FEM) [23] may be used to obtain the ‘‘overall’’ coefficient matrix
[B�]. Any trial value of v̄ that renders the value of the determinant of the overall
coefficient matrix equal to zero (i.e., =B�==0) represents one of the natural
frequencies of the ‘‘constrained’’ beam (i.e., the uniform beam together with all the
attached spring–mass systems), and the substitution of each corresponding value
of C� j ( j=10 4) into the eigenfunction determines the associated mode shapes.

To show the utility of the present approach, the lowest five natural frequencies
and mode shapes of a uniform beam carrying one, three and five spring–mass
systems, respectively, were calculated. In each case, the four boundary conditions
of the uniform beam were studied: clamped–free, simply supported–simply
supported, clamped–clamped, and clamped–simply supported. It was found that
the agreement between some of the present results and the existing ones was good.

2. FORMULATION OF THE PROBLEM

2.1.       

Figure 1 shows a cantilever beam carrying n spring–mass systems. The whole
cantilever beam with length l is subdivided into (n+1) segments by the attaching
point wv located at x= xv (v=1, 2, . . . , n), where wv denotes the vth ‘‘attaching
point’’ and (v) denotes the vth ‘‘segment’’. In addition, the left and right ends of
the beam are denoted by wL and wR , respectively.
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Figure 1. A cantilever beam carrying n spring–mass systems.

If the equations of motion of the ‘‘constrained’’ beam and the vth sprung mass
are respectively represented by

EI
14y(x, t)

1x4 + m̄
12y(x, t)

1t2 =0 (1)

mvz̈v + kv (zv − yv )=0 or mvz̈v =−kv (zv − yv ) (2)

then the compatibility of the deflection of the ‘‘constrained’’ beam at the vth
attaching point requires that

yL
v (xv , t)= yR

v (xv , t), (3)

y'Lv (xv , t)= y'Rv (xv , t), (4)

y0L
v (xv , t)= y0R

v (xv , t), (5)

where E is the Young’s modulus, I is the moment of inertia of the cross-sectional
area, m̄ is the beam mass per unit length, mv and kv represent the point mass and
spring constant of the vth spring–mass system, z̈v and zv are the acceleration and
displacement of the vth sprung mass (relative to its static equilibrium position),
yv , y'v and y0v are the deflection, slope and curvature of the ‘‘constrained’’ beam
at the vth attaching point, and the superscripts ‘‘L’’ and ‘‘R’’ represent the left
side and right side of the vth attaching point, respectively.

The force equilibrium between the beam and the sprung mass requires that

EIy1L
v (xv , t)−EIy1R

v (xv , t)=mvz̈v . (6)

The boundary conditions for the cantilever beam are given by

y(0, t)=0, y'(0, t)=0, (7a, b)

y0(l, t)=0, y1(l, t)=0, (7c, d)
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2.2.    

When the ‘‘constrained’’ beam undergoes free vibration, the instantaneous
displacements of the beam and the sprung masses take the form

y(x, t)=Y(x) eiv̄t (8)

zv =Zv eiv̄t, v=1, 2, . . . , n, (9)

where Y(x) and Zv represent the amplitudes of y and zv , respectively, and v̄

represents the natural frequency of the ‘‘constrained’’ beam.
The substitution of equation (8) into equation (1) gives

Y2(x)− b4Y(x)=0, (10)

where

b4 = m̄v̄2/EI or v̄2 = (bl)4 0 EI
m̄l41 , (11)

and from equations (2), (8) and (9) one obtains

kvYv −(kv −mvv̄
2)Zv =0

or

Yv +(−1+ g2
v )Zv =0, (12)

where

gv = v̄/vv , vv =zkv /mv . (13)

Similarly, when equations (8) and (9) are introduced into equations (3)–(7), one
obtains

YL
v (xv )=YR

v (xv ), Y'Lv (xv )=Y'Rv (xv ), Y0L
v (xv )=Y0R

v (xv ) (3)', (4)', (5)'

Y1L
v (xv )−Y1R

v (xv )+
m*v
l3 (bl)4Zv =0 (6)'

where

m*v =mv /mb , mb = m̄l (14)

and

Y(0)=0, Y'(0)=0, (7a)', (7b)'

Y0(l)=0, Y1(l)=0. (7c)', (7d)'
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The solution of equation (10) takes the form

Y(x)=C1 sin bx+C2 cos bx+C3 sinh bx+C4 cosh bx. (15)

For ‘‘the vth segment’’ the last equation may be rewritten as

Yv (j)=Cv1 sin blj+Cv2 cos blj+Cv3 sinh blj+Cv4 cosh blj, (16)

where

j= x/l. (17)

From equations (15)–(17) one has

Y'v (x)=
1
l

Y'v (j)= b[Cv1 cos blj−Cv2 sin blj+Cv3 cosh blj+Cv4 sinh blj],

(18)

Y0v (x)=
1
l2 Y0v (j)= b2[−Cv1 sin blj−Cv2 cos blj

+Cv3 sinh blj+Cv4 cosh blj], (19)

Y1v (x)=
1
l3 Y1v (j)= b3[−Cv1 cos blj+Cv2 sin blj

+Cv3 cosh blj+Cv4 sinh blj], (20)

where jv E jE jv+1.
From Figure 1 one sees that the left end of the beam, wL , coincides with the

left end of the first segment (v=1), hence, from equations (7a)', (7b)' and (16)–(18)
one obtains

Y(0)=C12 +C14 =0, (21a)

Y'(0)= b[C11 +C13]=0 or C11 +C13 =0. (21b)

To write equations (21a) and (21b) in matrix form gives

[BL ]{CL}= 0, (22a)

where

1 2 3 4

[BL ]=$01 1
0

0
1

1
0%12 , (22b)

{CL}= {C11 C12 C13 C14}= {C� 1 C� 2 C� 3 C� 4}, (22c)

where the symbols [ ] and {} represent the rectangular matrix and the column
vector, respectively, and

C� 1 =C11, C� 2 =C12, C� 3 =C13, C� 4 =C14. (22d)
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In equation (22b) and the subsequent equations, the numbers shown on the top
side and right side of the matrix represent the identification numbers of degrees
of freedom (dof ) for the associated constants C� i (i=1, 2, . . .).

For the vth attaching point, from equations (3)'–(6)' and equations (16)–(20),
one obtains

Cv1suv +Cv2cuv +Cv3shuv +Cv4chuv

−Cv+1,1suv −Cv+1,2cuv −Cv+1,3shuv −Cv+1,4chuv =0, (23)

Cv1cuv −Cv2suv +Cv3chuv +Cv4shuv

−Cv+1,1cuv +Cv+1,2suv −Cv+1,3chuv −Cv+1,4shuv =0, (24)

−Cv1suv −Cv2cuv +Cv3shuv +Cv4chuv

+Cv+1,1suv +Cv+1,2cuv −Cv+1,3shuv −Cv+1,4chuv =0, (25)

[−Cv1cuv +Cv2suv +Cv3chuv +Cv4shuv

+Cv+1,1cuv −Cv+1,2suv −Cv+1,3chuv −Cv+1,4shuv ]+m*v (bl)Zv =0. (26)

Substituting equation (16) into equation (12) yields one additional relationship

Cv1suv +Cv2cuv +Cv3shuv +Cv4chuv +(−1+ g2
v )Zv =0, (27)

where

suv =sin bljv , cuv =cos bljv , shuv =sinh bljv , chuv =cosh bljv

(28a)

and

uv = bljv . (28b)

It is noted that in equations (3)'–(6)', the ‘‘left side’’ of the vth attaching point
located at x= xv (or j= jv ) belongs to the segment v and the ‘‘right side’’ belongs
to the segment v+1. Thus the associated coefficients are represented by Cvj and
Cv+1,j ( j=10 4), respectively. Equations (23)–(27) in matrix form gives

[Bv ]{Cv}= 0, (29)
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4v−3 4v−2 4v−1 4v 4v+1 4v+2 4v+3 4v+4 4v+5

suv cuv shuv chuv −suv −cuv −shuv −chuv 0 5v−2

cuv −suv chuv shuv −cuv suv −chuv −shuv 0 5v−1

[Bv ]= −suv −cuv shuv chuv suv cuv −shuv −chuv 0 5vG
G

G

G

G

K

k

G
G

G

G

G

L

l
−cuv suv chuv shuv cuv −suv −chuv −shuv m*v (bl) 5v+1

(30)

suv cuv shuv chuv 0 0 0 0 −1+ g2
v 5v+2
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{Cv}= {Cv1 Cv2 Cv3 Cv4 Cv+1,1 Cv+1,2 Cv+1,3 Cv+1,4 Zv}

= {C� 4v−3 C� 4v−2 C� 4v−1 C� 4v C� 4v+1 C� 4v+2 C� 4v+3 C� 4v+4 C� 4v+5},
(31)

where

C� 4v−3 =Cv1, C� 4v−2 =Cv2, . . . , C� 4v+4 =Cv+1,4, C� 4v+5 =Zv . (32)

Since the right end of the beam, wR , coincides with the right end of the (n+1)th
segment (v= n+1), as may be seen from Figure 1, hence from equations (7c)',
(7d)' and (19), (20) one obtains

−Cn+1,1 sin bl−Cn+1,2 cos bl+Cn+1,3 sinh bl+Cn+1,4 cosh bl=0, (33a)

−Cn+1,1 cos bl−Cn+1,2 sin bl+Cn+1,3 cosh bl+Cn+1,4 sinh bl=0, (33b)

or

[BR ]{CR}= 0, (34)

where

4n+1 4n+2 4n+3 4n+4

[BR ]=G
G

G

K

k
−sin bl −cos bl sinh bl cosh bl G

G

G

L

l
p−1 , (35)

−cos bl sin bl cosh bl sinh bl p

{CR}= {Cn+1,1 Cn+1,2 Cn+1,3 Cn+1,4}

= {C� 4n+1 C� 4n+2 C� 4n+3 C� 4n+4}, (36)

C� 4n+1 =Cn+1,1, C� 4n+2 =Cn+1,2, C� 4n+3 =Cn+1,3, C� 4n+4 =Cn+1,4,

(37)

p=5n+4. (38)

In the last equations, p represents the total number of equations. From the above
derivations one sees that from each attaching point for a spring–mass system one
may obtain five equations (including three compatibility equations, one
force-equilibrium equation and one governing equation for the sprung mass), and
from each boundary (wL or wR ) one may obtain two equations. Hence, for a beam
carrying n spring–mass systems, the total number of equations that one may obtain
for the integration constants Cvi and mode displacements Zv (v=10 n, i=10 4)
is equal to 5n+4, i.e., p=5n+4 as shown by equation (38). Of course, the total
number of unknowns (Cvi and Zv ) is also equal to 5n+4. From equation (16) one
sees that the solution Yv (j) for each beam segment contains four unknown
integration constants Cvi (i=10 4), and from equations (12) and (6)' one sees that
the governing equation or the force-equilibrium equation for each sprung mass
contains one additional unknown Zv . Hence if a beam carries n sprung masses,
the total number of the beam segment is n+1 and thus the total number of
unknowns (Cvi and Zv ) is equal to 4(n+1)+ n=5n+4= p.
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If all the unknowns Cvi and Zi (v=10 n, i=10 4) are replaced by a column
vector {C�} with coefficients C� j (j=1, 2, . . . , p) defined by equations (22d), (32)
and (37), then the matrices [BL ], [Bv ] and [BR ] are similar to the element property
matrices (for the finite element method) with corresponding identification numbers
of degrees of freedom (dof ) shown on the top side and right side of the matrices
defined by equations (22b), (30) and (35). Based on the assembly technique for the
direct stiffness matrix method, it is easy to arrive at the following coefficient
equation for the entire vibrating system

[B�]{C�}= 0. (39)

The non-trivial solution of the problem requires that

=B�==0, (40)

which is the frequency equation, and the half-interval technique [24] may be used
to solve the eigenvalues v̄i (i=1, 2, . . .).

To substitute each value of v̄i into equation (39) one may determine the values
of unknowns C� i (i=10 p). Among which, C� 1 =C1, C� 2 =C2, C� 3 =C3, C� 4 =C4.
Hence the substitution of Cj ( j=10 4) into equation (15) will define the
corresponding mode shape Y(i)(j). For a cantilever beam carrying one (n=1) and
two (n=2) spring–mass systems, the corresponding matrices [B�](1) and [B�](2) are
shown in the Appendix [see equations (A1) and (A2)]. From the lengthy
expressions one sees that the conventional explicit formulations are not suitable
for a beam carrying more than three (n=3) spring–mass systems. However, the
numerical assembly technique presented in this paper may easily solve this
problem.

3. DETERMINATION OF [BL ] and [BR ] FOR VARIOUS
SUPPORTING CONDITIONS

From the last section one finds that the forms of [Bv ] for each attaching point
of the spring–mass system have nothing to do with the boundary conditions of
the carrying beam. Hence, for a ‘‘constrained’’ beam with various supporting
conditions, the only thing one should do is to modify the values of the two
boundary matrices [BL ] and [BR ] given by equations (22b) and (35), respectively,
according to the associated boundary conditions. Then the same assembly
procedures presented in the last section may be followed. This is one of the
predominant advantages of the presented approach. The boundary matrices [BL ]
and [BR ] for various boundary conditions are listed below:

(1) Hinged–hinged beam

1 2 3 4

[BL ]=
0 1 0 1 1

,
(41)K

k
L
l0 −1 0 1 2

4n+1 4n+2 4n+3 4n+4

[BR ]=
sin bl cos bl sinh bl cosh bl p−1

. (42)K
k

L
l−sin bl −cos bl sinh bl cosh bl p
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(2) Clamped–clamped beam

1 2 3 4

[BL ]=
0 1 0 1 1

, (43)K
k

L
l1 0 1 0 2

4n+1 4n+2 4n+3 4n+4

[BR ]=
sin bl cos bl sinh bl cosh bl p−1

. (44)K
k

L
lcos bl −sin bl cosh bl sinh bl p

(3) Clamped–hinged beam

1 2 3 4

[BL ]=
0 1 0 1 1

, (45)K
k

L
l1 0 1 0 2

4n+1 4n+2 4n+3 4n+4

[BR ]=
sin bl cos bl sinh bl cosh bl p−1

, (46)K
k

L
l−sin bl −cos bl sinh bl cosh bl p

4. NUMERICAL RESULTS AND DISCUSSION

The dimensions and physical properties for the uniform beam studied here
are: l=1·0 m, d=0·05 m, E=2·069×1011 N/m2, r=7·8367×103 kg/m3,
m̄= rA=15·3875 kg/m, I= pd4/64=3·06796×10−7 m4, mb = m̄l=15·3875 kg,
kb =EI/l3 =6·34761×104 N/m. It is worth mentioning that mb represents the
total mass of the beam, and kb represents one-third (1/3) of the spring constant
of a clamped–free beam at the free end. Since mb and kb are the important mass
parameter and stiffness parameter of a uniform beam, respectively, they are used
as the bases of dimensionless parameters m*i (=mi /mb ) and k*i (=ki /kb ),
i=1, 2, . . . in the following discussion.

4.1.        

In the existing literature, only the case of a uniform beam or plate carrying
‘‘one’’ spring–mass system can be found [2–8]. For example, reference [3]
determined the natural frequencies of a cantilever beam carrying ‘‘one’’ elastically
mounted point mass at j1 = x1/l=0·75, and the dimensionless spring constant
and point mass were: k*1 = k1/kb =3·0 and m*1 =m1/mb =0·2. A similar problem
was also studied in reference [2], but the sprung mass was located at the free end
(i.e., j1 =1·0) and the dimensionless magnitudes of spring constant and point mass
were: k*1 =100·0 and m*1 =0·5. The lowest five natural frequencies of the
‘‘constrained’’ cantilever beam, v̄i (i=10 5) (rad/s), are shown in Table 1. From
Table 1 one sees that the values of v̄i (i=10 5) obtained from the present method
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T 1

The lowest five natural frequencies v̄i (i=10 5) for a cantilever beam carrying ‘‘one’’ spring–mass system

Natural frequencies (rad/s)
Location ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

j1 = x1/l k*1 = k1

kb
m*1 =m1

mb
Methods v̄1 v̄2 v̄3 v̄4 v̄5

0·75 3·0 0·2 Present 174·2030 322·1513 1415·5524 3964·7796 7766·4614
Reference [3] 174·2097 322·1653 1415·5823 3964·9742 7766·7348

1·0 100 0·5 Present 128·6160 971·9372 2131·4107 4210·0351 7879·2394
Reference [2] 128·6211 – – – –

Note: l=1·0 m; kb =EI/l3 =6·34761×104 N/m; mb = m̄l=15·3875 kg.

T 2

The lowest five natural frequencies v̄i (i=10 5) for a uniform beam carrying ‘‘one’’ spring–mass system

Natural frequencies (rad/s)
Boundary Location ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

conditions j1 = x1/l k*1 = k1

kb
m*1 =m1

mb
v̄1 v̄2 v̄3 v̄4 v̄5

CF 174·2030 322·1513 1415·5524 3964·7796 7766·4614
SS 0·75 3·0 0·2 243·8579 645·2030 2540·5306 5706·1886 10142·4012
CC 247·9185 1440·2751 3964·3645 7766·8230 12836·6308
CS 245·9788 1000·1317 3212·8284 6696·1421 11449·8613

Note: l=1·0 m; kb =EI/l3 =6·34761×104 N/m; mb = m̄l=15·3875 kg.
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Figure 2. The lowest five mode shapes ỹi (j) (i=10 5) for a uniform beam carrying ‘‘one’’
spring–mass system with spring constant k1 =3Kb =1·90428×105 N/m and point mass
m1 =0·2mb =3·0775 kg located at j1 = x1/l=0·75 for the support conditions. (a) CF, (b) SS, (c)
CC and (d) CS.

T 3

The lowest five natural frequencies v̄i (i=10 5) for the uniform beam carrying
‘‘three’’ spring–mass systems (k1 =3kb , m1 =0·2mb ; k2 =4·5kb , m2 =0·5mb ;

k3 =6kb , m3 =1·0mb )

Locations of the three
spring-mass systems

ji = xi /l Natural frequencies (rad/s)
Boundary ZXXXCXXXV ZXXXXXXXXXCXXXXXXXXXV
conditions j1 j2 j3 v̄1 v̄2 v̄3 v̄4 v̄5

CF 102·7994 188·7347 248·6439 349·1161 1427·9521
SS 0·1 0·4 0·8 152·7341 185·0950 247·8314 677·5961 2548·6577
CC 156·6703 190·6994 248·6622 1454·2932 3968·4732
CS 154·6730 189·8148 248·6554 1017·8438 3211·9416

Note: l=1·0 m; kb =EI/l3 =6·34761×104 N/m; mb = m̄l=15·3875 kg.
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Figure 3. The lowest five mode shapes ỹi (j)(i=10 5) for a uniform beam carrying ‘‘three’’
spring–mass systems with spring constants k1 =3kb , k2 =4·5kb , k3 =6kb and point mass m1 =0·2mb ,
m2 =0·5mb , m3 =1·0mb located at j1 = x1/l=0·1, j2 = x2/l=0·4, j3 = x3/l=0·8 for the support
conditions: (a) CF, (b) SS, (c) CC and (d) CS, respectively.

T 4

The locations and magnitudes of the ‘‘five’’ spring–mass systems on a
uniform beam

Locations Magnitudes of spring constants Magnitudes of point masses
ji = xi /l k*i = ki /kb m*i =mi /mb

ZXXXCXXXV ZXXXXXCXXXXXV ZXXXXXCXXXXXV
j1 j2 j3 j4 j5 k*1 k*2 k*3 k*4 k*5 m*1 m*2 m*3 m*4 m*5

0·1 0·2 0·4 0·6 0·8 3 3·5 4·5 5 6 0·2 0·3 0·5 0·65 1·0

Note: l=1·0 m; kb =EI/l3 =6·34761×104 N/m; mb = m̄l=15·3875 kg.
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Figure 4. The lowest five mode shapes ỹi (j) (i=10 5) for a uniform beam carrying ‘‘five’’
spring–mass systems with locations and magnitudes shown in Table 4 for the support conditions:
(a) CF, (b) SS, (c) CC and (d) CS, respectively.

are very close to those from reference [3] or [2]. Hence, the reliability of the theory
presented and the computer programs developed in this paper should be
acceptable. It is noted that the eigenvalues presented in references [3] and [2] are
the frequency coefficients b�il, and those shown in Table 1 are the actual natural
frequencies v̄i , the relationship between them given by v̄i =(b�il)2

zEI/m̄l4 (i=1, 2, . . .).

4.2.        – 

In this section, the presented method is used to calculate the lowest five natural
frequencies and the corresponding mode shapes of a uniform beam carrying ‘‘any
number of ’’ sprung masses, to demonstrate the availability of the method for a
general constrained beam. Four boundary (/and supported) conditions of the
utility constrained beam are studied here. For convenience, a two-letter acronym
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T 5

The lowest five natural frequencies v̄i (i=10 5) for a uniform beam carrying ‘‘five’’
spring–mass systems

Natural frequencies (rad/s)
ZXXXXXXXXXXXCXXXXXXXXXXXV

Boundary conditions v̄1 v̄2 v̄3 v̄4 v̄5

CF 97·4880 171·6770 190·1782 218·7927 248·6537
SS 150·9571 169·4729 187·9147 217·1279 247·9868
CC 156·6318 175·9684 190·8985 218·8880 248·6641
CS 154·2684 173·8962 190·4056 218·8299 248·6588

Note: l=1·0 m; kb =EI/l3 =6·34761×104 N/m; mb = m̄l=15·3875 kg.

is used to designate the type of support, starting from the left end to the right end.
Hence, if the clamped, free and simply supported ends are denoted by C, F and
S, respectively, the boundary conditions of Tables 2, 3 and 5 may be represented
by CF, SS, CC and CS, respectively.

For the case of a uniform beam carrying ‘‘one’’ sprung mass located at
j1 =0·75, if the spring constant and point mass are k1 =3kb , and m1 =0·2mb , then
the lowest five natural frequencies v̄i (i=10 5) and the corresponding mode
shapes ỹi (j) of the uniform ‘‘constrained’’ beam are shown in Table 2 and Figure
2, respectively.

For the case of a uniform beam carrying ‘‘three’’ sprung masses located at
j1 =0·1, j2 =0·4 and j3 =0·8, where the respective spring constants of the three
spring–mass systems are k1 =3kb , k2 =4·5kb and k3 =6kb , and the respective
magnitudes of the three sprung masses are m1 =0·2mb , m2 =0·5mb and
m3 =1·0mb , the lowest five natural frequencies v̄i (i=10 5) and the
corresponding mode shapes ỹi (j) of the uniform ‘‘constrained’’ beam are shown
in Table 3 and Figure 3, respectively.

For the case of a uniform beam carrying ‘‘five’’ spring–mass systems with the
locations and magnitudes of the five springs and five sprung masses summarized
in Table 4, the lowest five natural frequencies v̄i (i=10 5) and the corresponding
mode shapes ỹi (j) are shown in Table 5 and Figure 4 respectively.

It is noted that the mode shapes ỹi (j) shown in Figures 2–4 are normalized such
that the maximum value of each mode is equal to unity.

5. CONCLUSION

For a uniform beam carrying more than ‘‘two’’ spring–mass systems, the
determination of exact solutions for the natural frequencies and mode shapes of
the ‘‘constrained’’ beam is usually not easy. However, by means of the technique
presented in this paper, one may obtain the exact natural frequencies and mode
shapes of a uniform beam carrying ‘‘any number of ’’ spring–mass systems with
no difficulty.
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APPENDIX

For a cantilever beam carrying one (n=1) and two (n=2) spring–mass
systems, the corresponding coefficient matrices [B�](1) and [B�](2) are

[Bv ](1) =

C� 1 C� 2 C� 3 C� 4 C� 5 C� 6 C� 7 C� 8 C� 9

0 1 0 1 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0 2

su1 cu1 shu1 chu1 −su1 −cu1 −shu1 −chu1 0 3

cu1 −su1 chu1 shu1 −cu1 su1 −chu1 −shu1 0 4

−su1 −cu1 shu1 chu1 su1 cu1 −shu1 −chu1 0 5

−cu1 su1 chu1 shu1 cu1 −su1 −chu1 −shu1 m*1 (bl) 6

su1 cu1 shu1 chu1 0 0 0 0 −1+ g2
1 7

0 0 0 0 −sbl −cbl shbl chbl 0 8

0 0 0 0 −cbl sbl chbl shbl 0 9

(A1)

K L
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
k l
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and

C� 1 C� 2 C� 3 C� 4 C� 5 C� 6 C� 7 C� 8 C� 9 C� 10 C� 11 C� 12 C� 13 C� 14

0 1 0 1 0 0 0 0 0 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0 0 0 0 0 0 2

su1 cu1 shu1 chu1 −su1 −cu1 −shu1 −chu1 0 0 0 0 0 0 3

cu1 −su1 chu1 shu1 −cu1 su1 −chu1 −shu1 0 0 0 0 0 0 4

−su1 −cu1 shu1 chu1 su1 cu1 −shu1 −chu1 0 0 0 0 0 0 5

−cu1 su1 chu1 shu1 cu1 −su1 −chu1 −shu1 0 0 0 0 m*1 (bl) 0 6

su1 cu1 shu1 chu1 0 0 0 0 0 0 0 0 −1+ g2
1 0 7

[B�](2) = 0 0 0 0 su2 cu2 shu2 chu2 −su2 −cu2 −shu2 −chu2 0 0 8

0 0 0 0 cu2 −su2 chu2 shu2 −cu2 su2 −chu2 −shu2 0 0 9

0 0 0 0 −su2 −cu2 shu2 chu2 su2 cu2 −shu2 −chu2 0 0 10

0 0 0 0 −cu2 su2 chu2 shu2 cu2 −su2 −chu2 −shu2 0 m*2 (bl) 11

0 0 0 0 su2 cu2 shu2 chu2 0 0 0 0 0 −1+ g2
2 12

0 0 0 0 0 0 0 0 −sbl −cbl shbl chbl 0 0 13

0 0 0 0 0 0 0 0 −cbl sbl chbl shbl 0 0 14

Where suv =sin bljv , cuv =cos bljv , shuv =sinh bljv , chuv =cosh bljv , uv = bljv , m*v =mv /mb , g2
v = v̄2/v2

v

(v=10 2) and sbl=sin bl, cbl=cos bl, shbl=sinh bl, chbl=cosh bl.

K L
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
k l
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